L to H mode Transition: Parametric Dependencies of the Temperature Threshold

C. Bourdelle, L. Choncé, N. Fedorczak, X. Garbet, P. Beyer, J. Citrin, G. Diff-Pradalier, G. Fuhr, A. Loarte, C. F. Maggi, F. Millitetlo, Y. Sarazin and JET EFDA Contributors*

1. CEA, IFRM, F-13108 Saint Paul-lez-Durance, France.
2. PIIM - UMR 7345 – Université d’Aix-Marseille - CNRS, 13397 Marseille Cedex 20, France.
4. ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance, France.
5. Max Planck Institut für Plasmaphysik, EURATOM Association, Garching, Germany.
6. CULHAM Centre for Fusion Energy, Abingdon, UK.
7. JET- EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK. *See the Appendix of F. Romanelli et al., Proceedings of the 24th IAEA Fusion Energy Conference 2012, San Diego, US.

Context

- The L to H mode transition occurs at T threshold which depends on B, n and more [Burrell 89, Sutrop 97, Hubbard 98, Righi 2000, Meakins 2010, etc.]
- ExB is stabilizing turbulence [Burrell review 97] more recently observed in AUG [P. Sauter NF2012], JET [Delabie this conf] and dithering transition identified as the result of an interplay between turbulence, zonal and mean E, flows [Schmitz PRL 2012, Tynan NF 2013]
- The nature of the stabilized turbulence matters: Resistive Ballooning Modes key player in the highly collisional edge [Rogers-Drake-Zeiler 96-97]. Coherent with lower P_h, observed for lower Z_eff in JET [Maggi NF2014, EPS2014, Bourdelle NF Letters 2014], AUG [Neu JNM2013], and earlier [Takizuka ITPA 2004]

Driving idea

Transition when ExB time is shorter than turbulence time, or \(\gamma_{\text{source}} / \gamma_{\text{turb}} \) below a certain number. Account for both the ExB stabilization and the nature of the turbulence.

Nature of Turbulence prior to Transition

- JET-ILW, prior to transition, \(\rho_0 = 0.97 \), linear stability analysis with GENE: RBM unstable [Bourdeul NF2014]

ExB Shear Derivation

- At \(\rho = 0.97 \), E, neo-classical: without \(V_T \) in JET at low NBI, \(V_a \) negligible, [Delabie this conf] in AUG no \(V_a \) gradient in this region [Viezer, NF13] with \(V_a \) from banana to P-S regimes
- At LCFS, E, scales (at least as) \(-3V_T\), assuming \(L_T \) constant across separatrix: \(E_r(1) = 3 \frac{T(0.97)}{0.03 a B/L_T} \)

Minimum in density due to modified underlying turbulence

At low density, i.e. lower collisionalities, ITG-TEM dominate over RBM, \(\gamma_{\text{ITG-TEM}} \) increases as \(n \) decreases
- High density, i.e. higher collisionalities, RBM dominate over ITG-TEM, \(\gamma_{\text{RBM}} \) increases as \(n \) increases

At low T RBM unstable, as T increases ITG-TEM take over Min \(\gamma \) for T in experimental range. NB: \(\alpha \) stabilization for T>> T_exp

Higher threshold in H vs D and in He vs D, at fixed Z_eff

Coherent with AUG key role of ion heat flux at plasma edge [Ryter NF2014]

This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Appendix:

- See the Appendix of F. Romanelli et al., Proceedings of the 24th IAEA Fusion Energy Conference 2012, San Diego, US.